

SIX SIGMA PROJECT at Deepa Engineering Works, Pune

Company Information

About the company

- Deepa Engineering Works is a leading manufacturer of all types of turned and thread rolled components in Pune. We specialize in manufacturing all type of Piston Rods and CNC turned components for our esteemed customers.
- We provide our customers with the value proposition of high volume, high precision and low cost components that are tailored to their needs. This is ensured by leveraging our manufacturing facility to rigorous quality standards. Deepa Engineering works is a ISO 9001:2015 certified manufacturer.

Production of piston rods:

- The company produces around 13,20,000 piston rods annually.
- This generates around 30% of the companies annual income and is the highest revenue generating SKU.
- The company supplies 8000 10000 piston rods per week to the customer.

Look at the product

Problem Definition

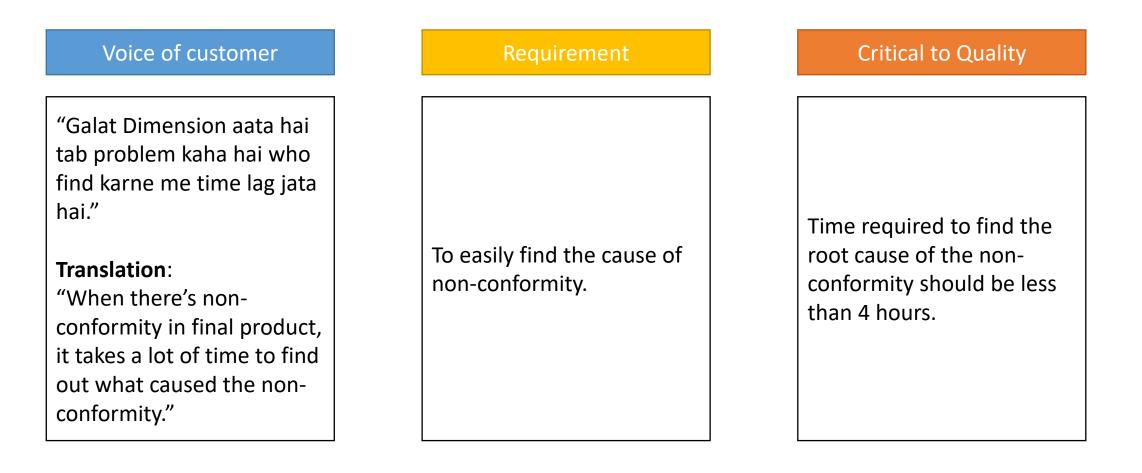
Current Scenario

When a non-conformity like cavities in the metal, more than required weight and size out of tolerance limit is found in the piston rod, the process of debugging starts at each machine. Employees check each step to find the root cause. The whole process takes from 8 hours to 1 and a half day.

Problem Definition

 Higher debugging time to find root cause of non-conformity increases the Non-Value Added time (NVA).

Key Process Indication (KPI)


• Time taken to find the root cause (Hours)

Suppliers	Inputs	Process	Output	Customer
1 . Raw Material Supplier.	1. Steel Rods.	1 . Receiving Inspection.	1 . Good Quality Steel Rods.	1 . Traub Machining & CNC Machining.
2 . Traub Machining & CNC Machining.	2 . Good Quality Steel Rods.	2 . Machining.	2 . Semi-Finished Product.	2 . Step Grinding.
3 . Step Grinding.	3 . Semi Finished product	3 . Machining of Step Dia.	3 . Semi Finished product with step diameter 9.05±0.02mm.	3 . Thread Rolling.
4 . Thread Rolling.	 4. Semi Finished product with step diameter 9.05±0.02mm. 	4 . Threading of M10x1.25-6g.	4 . Semi Finished product with Step and Threads.	4. Centreless Grinding.
5. Centreless Grinding.	5 . Semi Finished product with Step and Threads.	5 . Rough pass of centreless grinding.	5 . Roughly Finished Product.	5 . Swiss Super Finishing'
6 . Swiss Super Finishing.	6 . Roughly Finished Product.	6 . Final Pass of grinding process in which final dimension are achieved.	6 . Fully Finished Product with dimensions as per customer drawing.	6 . Final Inspection.
7 . Final Inspection.	7 . Fully Finished Product with dimensions as per drawing.	7 . Final Inspection of all dimensions.	7 . Finished Products with conforming dimensions.	7. Packing & Dispatch.
8. Packing & Dispatch	8. Finished Products with conforming dimensions.	8 . Packing of products in boxes and dispatching.	8. Packed Products dispatched to Customer.	8. External Customer.

Voice of customer over here is the business owner.

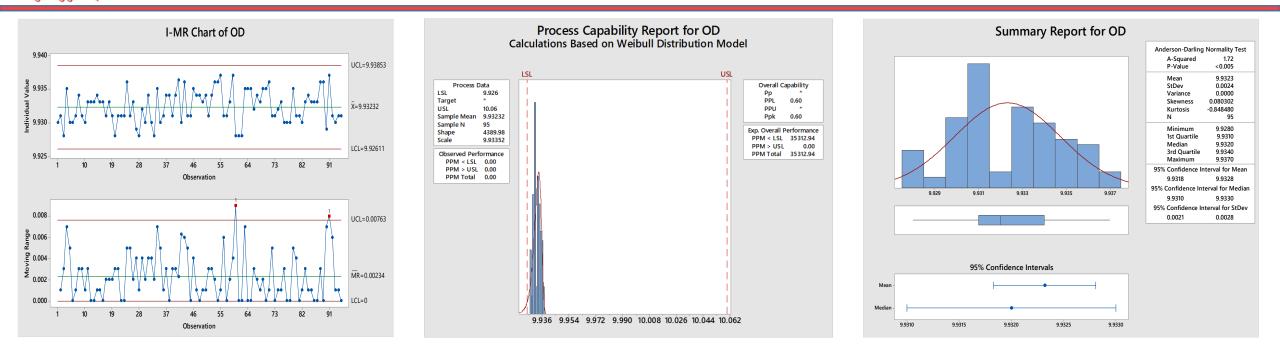
Root Cause Validation

• Why-Why analysis was done to check the root cause validation.

To many irregular seeming non conformitiesNo direct way to check where the non-conformity arises fromNo data being captured to find pattern/perform analysis.No procedure to check non conformity in process/ machineNo data about capability of machine or no SOP to take measurement present	Root Cause	Why	Why	Why	Why
	seeming non	check where the non-conformity	captured to find pattern/ perform	check non conformity in	capability of machine or no SOP to take measurement

Project Theme					Justification				
Assessing non-confo	ormities and machine	capability in current	proces	S.	SPC charts would help in pin pointing the machine which caused the non-conformity, which currently is not possible.				
	Go	al statement	Project scope						
Measure (KPI)	Current Level	Goal / target		Target date	If applied across the shop floor, this could reduced defective participation of the shop floor.				
Non-conformity per week	40	< 10		29/9/2019	manufactured and can also check capability of individual machines.				
	Pr	oject Plan	Team Members						
	Phase	Sta	End Date	Project Guide: Prof. Ismail Akbani					
Reason for improvement 28/8/2019 1/9/2019		1/9/2019	1. Jay Khedekar						
		1/9/20)19	1/9/2019	2. Jatin Sharma				
Explore Alternative	s and select	1/9/20)19	3/9/2019	3. Atharva Bahirat				
Details the solution	s and implement	7/9/20)19	16/9/2019					
Result Check		17/9/2	2019	26/9/2019					
Sustenance		26/9/2	2019	29/9/2019					

Measure and Analysis Phase

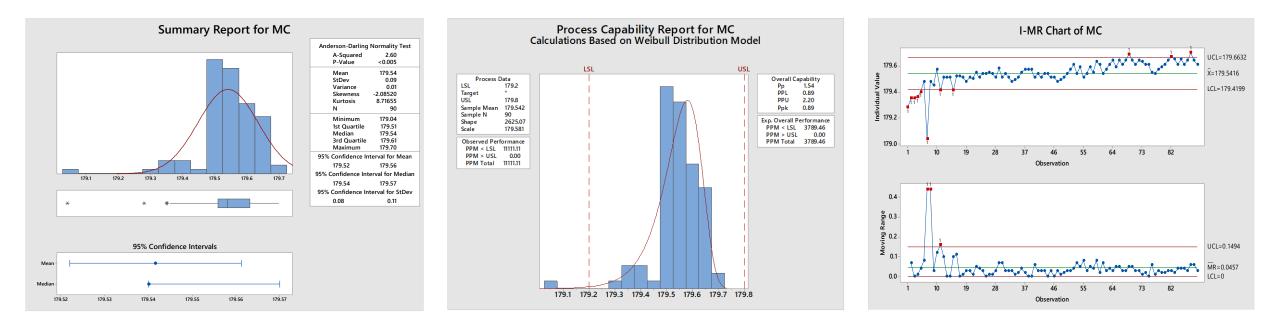


Traubing	OD Grind	MC2
179.28	9.93	6.965
179.35	9.931	6.967
179.35	9.928	6.966
179.36	9.935	6.967
179.4	9.93	6.968
179.48	9.93	6.999
179.04	9.931	6.97
179.48	9.934	6.971
179.45	9.931	6.975
179.57	9.93	6.96
179.41	9.933	6.965
179.51	9.933	6.964
179.51	9.933	6.961
179.51	9.934	6.967
179.41	9.933	6.967
179.52	9.933	6.968
179.52	9.931	6.968
179.51	9.933	6.967

why did we take the following measurement?	While inspection visit on factory floor, we took out the processes which can contribute to error. These three process seemed to be most error prone places.
What analysis showed us?	Analysis opened up door to new problems which were happening on the shop floor but we had not anticipated. Process being skewed is one of them which made Process capability low.

90 readings

OD G	rinding
Standard Deviation	0.002394788
Specification	10 (+0.06, -0.074)
Data Distribution	Weibull
Cpk	0.6
Ср	-
Mean	9.932318947


Abrasive process used to reduce the diameter to get it to the specified value by grinding.

Traub Machining

Tra	aubing
Standard Deviation	0.093153531
Specification	179.5 ± 0.3
Data Distribution	Weibull Distribution
Cpk	0.89
Ср	1.54
Mean	179.5415556

Traub is an automated lathe machine used to get the metal bar to specified length. Most suitable for mass production of suitable part.

Solution & Implementation

Process	Problems	Solutions Provided
OD Grinding	Employees taking incorrect reading	Suggestion for ring gauge was given from our side. Which was then improvised to air ring gauge. Implemented X bar – R chart and set fixed spots to take readings.
Traub Machining	Frequently giving out of control limits parts. Multiple readings above/ below central line.	Implemented Control chart for continuous monitoring.

Implementation

-					Statist	tical Pro	ocess C	ontrol -	- Pistor	n Rod	and the second second				
Process N	lame: /	Q.D.	stind	ing.										22/09/	
									End Date: 2719115						
Day 1	9.930	9.931	9.928	9 935	9.930	9.930	9.931	9.934	9.931	9.930	9.933	9.933	9.934	9-933	9933
Day 2	9.931	9 933	9.936	9.93)	9-931	9.931	9.935	9-936	9.930	9.929	9.983	9.92	9.930	9-934	9.930
_	9928	9.935	9.930	9.930	9.934	9931	9-932	9.934	9.936	9.936	9.930	9.93	9.93	5 993	9.934
Day 3	0.932	0.024	GA28	9.931	9:936	9.937	9.935	9.930	9.93	9.93	9.93	3 9.92	18 9.9	32 9.9	31 9.935
Day 4	0.000	9.301	550	5 5-1	0.035	9.024	9.93	4 9-93	3 9.93	933	9.93	2 9 99	0 9.9	3) 9.9	32 9.931
Day 5	9-9-35	9.932	9.933	9.934	5 55	1.30.		0.02	10.02	6 9.92	7 9.0	29 9.0	13) 9.	931 9	932 9-934
Day 6	9.931	9.930	9.933	19.93	39.93	3 9.93	3 9-93	5 9.93	2930	5 3 3 5	159	1			932 9.934

Reduction in cost incurred due to defects.

Better view of the quality of product produced.

Reduction in time to identify error causing process/ activity.

Help in keeping check on machine performance in long term with long term trend charts.

Thank You